Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana

Plant J. 1999 Oct;20(2):135-142. doi: 10.1046/j.1365-313x.1999.00570.x.


Plants react to mechanical damage by activating a set of genes, the products of which are thought to serve defensive functions. In solanaceous plants, cell wall-derived oligosaccharides and the plant hormones jasmonic acid and ethylene participate in the signalling network for wound-induced expression of proteinase inhibitors and other defence-related genes, both in the locally damaged and in the systemic non-damaged leaves. Here we show that in Arabidopsis thaliana, these signalling components interact in novel ways to activate distinct responses. In damaged tissues, oligosaccharides induce the expression of a specific set of wound-responsive genes while repressing jasmonic acid-responsive genes that are activated in the systemic tissues. The oligosaccharide-mediated repression of the jasmonic acid-dependent signalling pathway is exerted through the production and perception of ethylene in the locally damaged tissue. This cross-talk between separate wound signalling pathways thus allows the set up of different responses in the damaged and the systemic tissues of plants reacting to injury.