Induction of Tight Junctions in Human Connexin 32 (hCx32)-transfected Mouse Hepatocytes: Connexin 32 Interacts With Occludin

Biochem Biophys Res Commun. 1999 Dec 9;266(1):222-9. doi: 10.1006/bbrc.1999.1778.


Small gap junction plaques are associated with tight junction strands in some cell types including hepatocytes and it is thought that they may be closely related to tight junctions and the establishment of cell polarity. In order to examine roles of gap junctions in regulating expression and structure of tight junctions, we transfected human Cx32 cDNA into immortalized mouse hepatocytes (CHST8 cells) which lack endogenous Cx32 and Cx26. Immunocytochemistry revealed that endogenous integral tight junction protein occludin was strongly localized and was colocalized with Cx32 at cell borders in transfectants, whereas neither was detected in parental cells. In Northern blots, mRNAs encoding occludin and the other integral tight junction proteins, claudin-1 and -2, were induced in the transfectants compared to parental cells. In Western blots, occludin protein was increased in the transfectants compared to parental cells, and binding of occludin to Cx32 protein was demonstrated by immunoprecipitation. In freeze fracture of the transfectants, tight junction strands were more numerous and complex compared to parental cells, and small gap junction plaques appeared within induced tight junction strands. Nevertheless, no change in barrier function of tight junctions was observed. These results indicate that in hepatocytes, gap junction, and tight junction expression are closely coordinated, and that Cx32 may play a role in regulating occludin expression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brefeldin A / pharmacology
  • Cell Line
  • Claudin-1
  • Claudins
  • Connexins / genetics
  • Connexins / metabolism*
  • Female
  • Freeze Fracturing
  • Gap Junctions / drug effects
  • Gap Junctions / metabolism
  • Gene Deletion
  • Gene Expression Regulation / drug effects
  • Humans
  • Immunohistochemistry
  • Liver / cytology*
  • Liver / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Mice
  • Mice, Inbred C3H
  • Occludin
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Tight Junctions / drug effects
  • Tight Junctions / metabolism*
  • Tight Junctions / ultrastructure
  • Transfection


  • CLDN1 protein, human
  • CLDN2 protein, human
  • Claudin-1
  • Claudins
  • Cldn1 protein, mouse
  • Cldn2 protein, mouse
  • Connexins
  • DFNA3 protein, human
  • Membrane Proteins
  • OCLN protein, human
  • Occludin
  • Ocln protein, mouse
  • RNA, Messenger
  • connexin 32
  • Brefeldin A