Computational consequences of temporally asymmetric learning rules: I. Differential hebbian learning

J Comput Neurosci. Nov-Dec 1999;7(3):235-46. doi: 10.1023/a:1008910918445.

Abstract

Temporally asymetric learning rules governing plastic changes in synaptic efficacy have recently been identified in physiological studies. In these rules, the exact timing of pre- and postsynaptic spikes is critical to the induced change of synaptic efficacy. The temporal learning rules treated in this article are approximately antisymmetric; the synaptic efficacy is enhanced if the postsynaptic spike follows the presynaptic spike by a few milliseconds, but the efficacy is depressed if the postsynaptic spike precedes the presynaptic spike. The learning dynamics of this rule are studied using a stochastic model neuron receiving a set of serially delayed inputs. The average change of synaptic efficacy due to the temporally antisymmetric learning rule is shown to yield differential Hebbian learning. These results are demonstrated with both mathematical analyses and computer simulations, and connections with theories of classical conditioning are discussed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebral Cortex / physiology
  • Conditioning, Classical / physiology
  • Learning / physiology*
  • Models, Neurological
  • Neuronal Plasticity / physiology
  • Stochastic Processes
  • Synapses / physiology
  • Time Factors*