The influence of muscle glycogen content on basal and contraction-induced glucose transport and cell surface GLUT-4 content was studied in rat skeletal muscle. Wistar rats were preconditioned by a combination of swimming exercise and diet, resulting in 40% lower (LG) or threefold higher (HG) muscle glycogen content compared with nonexercised controls (NG). At rest and during contractions, 2-deoxy-D-glucose uptake in perfused fast-twitch muscle, but not slow-twitch muscle, was significantly lower in HG compared with LG. Cell surface GLUT-4 content in the fast-twitch plantaris was 994 +/- 180, 1,173 +/- 311, and 2,155 +/- 243 dpm/g in the basal condition and increased (P < 0.05) to 2,285 +/- 239, 3,230 +/- 464, and 4,847 +/- 654 dpm/g during contractions with HG, NG, and LG, respectively, the increase being significantly smaller in HG compared with LG. The contraction-induced increments in glucose transport and in cell surface GLUT-4 content were negatively correlated with the initial glycogen content (P <0.01). In conclusion, glucose transport and cell surface GLUT-4 content in resting and contracting fast-twitch muscle are dependent on the muscle glycogen content.