We previously reported that the glycoprotein extracted from aloe strongly inhibited the mediator releases caused by the activation of guinea pig lung mast cells. Therefore, this study aimed to purify a single component that has an antiallergic effect from crude aloe extract and then to assess the effects of aloe single component (alprogen) on the mechanism of mediator releases caused by the mast cell activation. We purified aloe extracts by using various columns. We also purified mast cells from guinea pig lung tissues by using enzyme digestion, rough and discontinuous density Percoll gradient. Mast cells were sensitized with IgG(1) (anti-ovalbumin) and challenged with ovalbumin. Histamine was assayed by using a fluorometric analyzer and leukotrienes by radioimmunoassay. [Ca(2+)](i) level was analyzed by using a confocal laser scanning microscope. Protein kinase activity was determined by the protein phosphorylated with [gamma-(32)P]ATP. The phospholipase D activity was assessed by the labeled phosphatidylalcohol. The amount of mass 1,2-diacylglycerol (DAG) was measured by the [(3)H]DAG produced when prelabeled with [(3)H]myristic acid. Phospholipase A(2) activity was determined by measuring the lyso-phosphatidylcholine released from the labeled phospholipids. Alprogen significantly decreased histamine and leukotriene releases and blocked completely Ca(2+) influx during mast cell activation. The protein kinase C and phospholipase D activities were decreased by alprogen in dose-dependent manner. Alprogen inhibited mass DAG formation and the phospholipase A(2) activity during mast cell activation. The data suggest that alprogen purified from aloe inhibits multiple signals as well as blocking Ca(2+) influx caused by mast cells activated with specific antigen-antibody reactions and that then the inhibition of histamine and leukotriene release follows.