Morphogenesis of the lower incisor in the mouse from the bud to early bell stage

Int J Dev Biol. 1999 Sep;43(6):531-9.


The development of the lower incisor in the mouse was investigated from histological sections using computer-aided 3D reconstructions. At ED 13.0, the incisor was still at the bud stage. At ED 13.5, the initial cap was delimited by a short cervical loop, the development of which proceeded on the labial side, but was largely retarded on the medial side. This difference was maintained up to ED 15.0. From ED 16.0, the bell stage was achieved. Metaphases had a ubiquitous distribution both in the enamel organ and in the dental papilla from the bud to early bell stage. Apoptosis gradually increased in the mesenchyme posteriorly to the labial cervical loop from ED 13.5 to 14.0 and then disappeared; this apoptosis was not related to the posterior growth of the incisor. From ED 13.5, a high apoptotic activity was observed in the stalk. A focal area of apoptosis was observed at ED 13.5 in the enamel organ, approaching the epithelio-mesenchymal junction at the future tip of the incisor. There, the inner dental epithelium formed a bulbous protrusion towards dental papilla, reminiscent of the secondary enamel knot of mouse molars. This epithelial protrusion was still maintained at the bell stage. The enamel knot in the incisor demonstrated specific features, different from those characterizing the enamel knot in the molar: the concentric arrangement of epithelial cells was much less prominent and the occurrence of apoptosis was very transitory in the incisor at ED 13.5. The disappearance of the enamel knot despite a low apoptotic activity and the maintenance of the protrusion suggested a histological reorganization specific for rodent incisor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Dental Enamel / embryology*
  • Gestational Age
  • Image Processing, Computer-Assisted
  • Incisor / embryology*
  • Mesoderm / cytology
  • Mice
  • Mice, Inbred ICR
  • Mitosis
  • Morphogenesis