Psoralen activity and binding sites in melanotic and amelanotic human melanoma cells

Pigment Cell Res. 1999 Dec;12(6):367-75. doi: 10.1111/j.1600-0749.1999.tb00520.x.

Abstract

The biological activity and specific binding sites of 8-methoxypsoralen (8-MOP) are assayed using two human melanoma cell lines, melanotic SK-Mel 28 and amelanotic C32TG. Long-term (72 hr) treatment with 8-MOP at a concentration of 10(-4)M results in an increase in melanogenesis and a decrease in proliferation, similar in both cell lines. Daily exposure of these cells to ultraviolet A (UVA) irradiation (1.28 mJ/cm(2)) does not enhance the response to the compound. Daily pulse application (30 min daily) of 8-MOP does not promote any response. However, in combination with UVA, 8-MOP pulse treatment becomes as effective as the long-term treatment. A decrease in cell proliferation in the constant presence of 8-MOP is not coupled with apoptosis, since no increase in the number of apoptotic nuclei was observed after the treatment. The flow cytometry indicates that 8-MOP arrests the cells at the G0/G1 phase, irrespective of the presence or absence of UVA light. In view of the lack of epidermal growth factor (EGF) receptors in both cell lines, it is not likely that such an arrest is associated with the down-regulation of EGF receptors by 8-MOP. It is noted that this compound elicits a biphasic cell response, since cell proliferation increases after the first 24-hr treatment, whereas it decreases in the subsequent 48 hr and thereafter. Competition binding assays using 3H-8-MOP disclosed: 1) the specific binding of the compound in both cell lines occurs in the presence or absence of UVA light, and 2) a higher binding rate at low concentrations of the compound is in SK-Mel 28 (72%) rather than C32TG (58%) cells. The competition assays in the presence of UVA suggest a possible occurrence of covalent bindings between psoralen and receptor, as DNA covalent binding accounted to only 3-5% of the total binding in both cell lines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Binding Sites
  • Binding, Competitive
  • Ficusin / metabolism*
  • Humans
  • Melanins / biosynthesis*
  • Melanoma / metabolism*
  • Methoxsalen / pharmacology
  • Tumor Cells, Cultured
  • Ultraviolet Rays

Substances

  • Melanins
  • Ficusin
  • Methoxsalen