DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis

Oncogene. 1999 Dec 20;18(55):7883-99. doi: 10.1038/sj.onc.1203283.


Several newly identified tumor suppressor genes including ATM, NBS1, BRCA1 and BRCA2 are involved in DNA double-strand break repair (DSBR) and DNA damage-induced checkpoint activation. Many of the gene products involved in checkpoint control and DSBR have been studied in great detail in yeast. In addition to evolutionarily conserved proteins such as Chk1 and Chk2, studies in mammalian cells have identified novel proteins such as p53 in executing checkpoint control. DSBR proteins including Mre11, Rad50, Rad51, Rad54, and Ku are present in yeast and in mammals. Many of the tumor suppressor gene products interact with these repair proteins as well as checkpoint regulators, thus providing a biochemical explanation for the pleiotropic phenotypes of mutant cells. This review focuses on the proteins mediating G1/S, S, and G2/M checkpoint control in mammalian cells. In addition, mammalian DSBR proteins and their activities are discussed. An intricate network among DNA damage signal transducers, cell cycle regulators and the DSBR pathways is illustrated. Mouse knockout models for genes involved in these processes have provided valuable insights into their function, establishing genomic instability as a major contributing factor in tumorigenesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Cycle / genetics*
  • Cell Transformation, Neoplastic*
  • DNA Damage*
  • DNA Repair / genetics*
  • Gene Expression Regulation, Developmental
  • Humans
  • Mammals
  • Mice
  • Mice, Knockout
  • Saccharomyces cerevisiae / genetics
  • Signal Transduction