Characterization of VX on concrete using ion trap secondary ionization mass spectrometry

J Am Soc Mass Spectrom. 2000 Jan;11(1):69-77. doi: 10.1016/S1044-0305(99)00118-X.

Abstract

The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate) was analyzed on the surface of concrete samples using an ion trap secondary ion mass spectrometer (IT-SIMS). It was found that VX could be detected down to an absolute quantity of 5 ng on a concrete chip, or to a surface coverage of 0.0004 monolayers on crushed concrete. To achieve these levels of detection, the m/z 268-->128 ion fragmentation was measured using MS2, where m/z 268 corresponds to [VX + H]+, and 128 corresponds to a diisopropylvinylammonium isomer, that is formed by the elimination of the phosphonothiolate moiety. Detection at these levels was accomplished by analyzing samples that had been recently exposed to VX, i.e., within an hour. When the VX-exposed concrete samples were aged, the SIMS signature for intact VX had disappeared, which signaled the degradation of the compound on the concrete surface. The VX signature was replaced by ions which are interpreted in terms of VX degradation products, which appear to be somewhat long lived on the concrete surface. These compounds include ethylmethylphosphonic acid (EMPA), diisopropyl taurine (DIPT), diisopropylaminoethanethiol (DESH), bis(diisopropylaminoethane) disulfide [(DES)2], and a particularly tenacious compound that may correspond to diisopropylvinylamine (DIVA), or an isomer thereof. It was found that the thiolamine-derived degradation products DIPT, DESH, and (DES)2 were removed with isopropyl alcohol extraction. However, the DIVA-related degradation product was observed to strongly adhere to the concrete surface for longer than one week. Although quantitation was not possible in this set of experiments, the results clearly show the rapid degradation of VX on concrete, as well as the surface sensitivity of the IT-SIMS for intact VX and its adsorptive degradation products.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chemical Warfare Agents / chemistry*
  • Gas Chromatography-Mass Spectrometry
  • Organothiophosphorus Compounds / chemistry*

Substances

  • Chemical Warfare Agents
  • Organothiophosphorus Compounds
  • VX