Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor

J Bacteriol. 2000 Feb;182(3):805-11. doi: 10.1128/JB.182.3.805-811.2000.

Abstract

The Vibrio fischeri luminescence (lux) operon is regulated by a quorum-sensing system that involves the transcriptional activator (LuxR) and an acyl-homoserine lactone signal. Transcriptional activation requires the presence of a 20-base inverted repeat termed the lux box at a position centered 42.5 bases upstream of the transcriptional start of the lux operon. LuxR has proven difficult to study in vitro. A truncated form of LuxR has been purified, and together with sigma(70) RNA polymerase it can activate transcription of the lux operon. Both the truncated LuxR and RNA polymerase are required for binding to lux regulatory DNA in vitro. We have constructed an artificial lacZ promoter with the lux box positioned between and partially overlapping the consensus -35 and -10 hexamers of an RNA polymerase binding site. LuxR functioned as an acyl-homoserine lactone-dependent repressor at this promoter in recombinant Escherichia coli. Furthermore, multiple lux boxes on an independent replicon reduced the repressor activity of LuxR. Thus, it appears that LuxR can bind to lux boxes independently of RNA polymerase binding to the promoter region. A variety of LuxR mutant proteins were studied, and with one exception there was a correlation between function as a repressor of the artificial promoter and activation of a native lux operon. The exception was the truncated protein that had been purified and studied in vitro. This protein functioned as an activator but not as a repressor in E. coli. The data indicate that the mutual dependence of purified, truncated LuxR and RNA polymerase on each other for binding to the lux promoter is a feature specific to the truncated LuxR and that full-length LuxR by itself can bind to lux box-containing DNA.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • DNA, Bacterial / metabolism
  • Mutagenesis
  • Operon
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Sequence Analysis, DNA
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*
  • Vibrio / genetics*
  • Vibrio / metabolism

Substances

  • Bacterial Proteins
  • DNA, Bacterial
  • Repressor Proteins
  • Trans-Activators
  • LuxR autoinducer binding proteins