Mechanisms of coxsackievirus-induced damage to human pancreatic beta-cells

J Clin Endocrinol Metab. 2000 Jan;85(1):432-40. doi: 10.1210/jcem.85.1.6306.


Enteroviruses may be involved in the pathogenesis of insulin-dependent diabetes mellitus, either through direct beta-cell infection or as triggers of autoimmunity. In the present study we investigated the patterns of infection in adult human islet cell preparations (consisting of 56+/-14% beta-cells) by several coxsackieviruses. The cells were infected with prototype strains of coxsackievirus B (CBV) 3, 4, and 5 as well as coxsackievirus A9 (CAV-9). The previously characterized diabetogenic strain of coxsackievirus B4 (CBV-4-E2) was used as a reference. All viruses replicated well in beta-cells, but only CBVs caused cell death. One week after infection, the insulin response of the beta-cells to glucose or glucose plus theophylline was most severely impaired by CBV-3 and CBV-5 infections. CBV-4 also caused significant functional impairment, whereas CAV-9-infected cells responded like uninfected controls. After 2 days of infection, about 40% of CBV-5-infected cells had undergone morphological changes characteristic of pyknosis, i.e. highly distorted nuclei with condensed but intact chromatin. Both mitochondria and plasma membrane were intact in these cells. DNA fragmentation was found in 5.9+/-1.1% of CBV-5-infected beta-cell nuclei (2.1+/-0.3% in controls; P<0.01). CAV-9 infection did not induce DNA fragmentation. One week after infection the majority of infected cells showed characteristics of secondary necrosis. Medium nitrite and inducible nitric oxide synthase messenger ribonucleic acid levels were not significantly up-regulated by CBV infection. These results suggest that several enteroviruses may infect human beta-cells. The infection may result in functional impairment or death of the beta-cell or may have no apparent immediate adverse effects, as shown here for CAV-9. Coxsackie B viruses cause functional impairment and beta-cell death characterized by nuclear pyknosis. Apoptosis appears to play a minor role during a productive CBV infection in beta-cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Apoptosis / physiology
  • Cell Survival
  • Coxsackievirus Infections / pathology*
  • DNA / biosynthesis
  • DNA Fragmentation
  • Enterovirus* / ultrastructure
  • Humans
  • Immunohistochemistry
  • In Situ Nick-End Labeling
  • Insulin / biosynthesis
  • Islets of Langerhans / metabolism
  • Islets of Langerhans / pathology*
  • Islets of Langerhans / virology
  • Microscopy, Electron
  • Nitric Oxide Synthase / biosynthesis
  • Nitric Oxide Synthase Type II
  • RNA, Messenger / biosynthesis
  • Virus Replication


  • Insulin
  • RNA, Messenger
  • DNA
  • NOS2 protein, human
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II