Activation of the heterodimeric IkappaB kinase alpha (IKKalpha)-IKKbeta complex is directional: IKKalpha regulates IKKbeta under both basal and stimulated conditions

Mol Cell Biol. 2000 Feb;20(4):1170-8. doi: 10.1128/mcb.20.4.1170-1178.2000.

Abstract

Signal-induced nuclear expression of the eukaryotic NF-kappaB transcription factor involves the stimulatory action of select mitogen-activated protein kinase kinase kinases on the IkappaB kinases (IKKalpha and IKKbeta) which reside in a macromolecular signaling complex termed the signalsome. While genetic studies indicate that IKKbeta is the principal kinase involved in proinflammatory cytokine-induced IkappaB phosphorylation, the function of the equivalently expressed IKKalpha is less clear. Here we demonstrate that assembly of IKKalpha with IKKbeta in the heterodimeric signalsome serves two important functions: (i) in unstimulated cells, IKKalpha inhibits the constitutive IkappaB kinase activity of IKKbeta; (ii) in activated cells, IKKalpha kinase activity is required for the induction of IKKbeta. The introduction of kinase-inactive IKKalpha, activation loop mutants of IKKalpha, or IKKalpha antisense RNA into 293 or HeLa cells blocks NIK (NF-kappaB-inducing kinase)-induced phosphorylation of the IKKbeta activation loop occurring in functional signalsomes. In contrast, catalytically inactive mutants of IKKbeta do not block NIK-mediated phosphorylation of IKKalpha in these macromolecular signaling complexes. This requirement for kinase-proficient IKKalpha to activate IKKbeta in heterodimeric IKK signalsomes is also observed with other NF-kappaB inducers, including tumor necrosis factor alpha, human T-cell leukemia virus type 1 Tax, Cot, and MEKK1. Conversely, the theta isoform of protein kinase C, which also induces NF-kappaB/Rel, directly targets IKKbeta for phosphorylation and activation, possibly acting through homodimeric IKKbeta complexes. Together, our findings indicate that activation of the heterodimeric IKK complex by a variety of different inducers proceeds in a directional manner and is dependent on the kinase activity of IKKalpha to activate IKKbeta.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Line
  • Dimerization
  • Enzyme Activation
  • Gene Products, tax / pharmacology
  • HeLa Cells
  • Humans
  • I-kappa B Kinase
  • MAP Kinase Kinase Kinase 1*
  • MAP Kinase Kinase Kinases / metabolism
  • Mutation
  • Phosphorylation
  • Protein Structure, Quaternary
  • Protein-Serine-Threonine Kinases / chemistry*
  • Protein-Serine-Threonine Kinases / genetics
  • Protein-Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Signal Transduction
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • Gene Products, tax
  • Proto-Oncogene Proteins
  • Recombinant Proteins
  • Tumor Necrosis Factor-alpha
  • Protein-Serine-Threonine Kinases
  • CHUK protein, human
  • I-kappa B Kinase
  • IKBKB protein, human
  • IKBKE protein, human
  • MAP Kinase Kinase Kinase 1
  • MAP Kinase Kinase Kinases
  • MAP3K1 protein, human
  • MAP3K8 protein, human