During rapid eye movements, motion of the stationary world is generally not perceived despite displacement of the whole image on the retina. Here we report that during saccades, human observers sensed visual motion of patterns with low spatial frequency. The effect was greatest when the stimulus was spatiotemporally optimal for motion detection by the magnocellular pathway. Adaptation experiments demonstrated dependence of this intrasaccadic motion percept on activation of direction-selective mechanisms. Even two-dimensional complex motion percepts requiring spatial integration of early motion signals were observed during saccades. These results indicate that the magnocellular pathway functions during saccades, and that only spatiotemporal limitations of visual motion perception are important in suppressing awareness of intrasaccadic motion signals.