Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci

Plant J. 2000 Jan;21(1):27-42. doi: 10.1046/j.1365-313x.2000.00650.x.

Abstract

The application of antisense transgenes in plants is a powerful tool to inhibit gene expression. The underlying mechanism of this inhibition is still poorly understood. High levels of antisense RNA (as-RNA) are expected to result in strong silencing but often there is no clear correlation between as-RNA levels and the degree of silencing. To obtain insight into these puzzling observations, we have analyzed several petunia transformants of which the pigmentation gene chalcone synthase (Chs) is post-transcriptionally silenced in corollas by antisense (as) Chs transgenes. The transformants were examined with respect to the steady-state as-RNA level, transcription level of the as-transgenes, the repetitiveness and structure of the integrated T-DNAs, and the methylation status of the transgenes. This revealed that the transformants can be divided in two classes: the first class contains a single copy (S) T-DNA of which the as-Chs gene is transcribed, although several-fold lower than the endogenous Chs genes. As there are not sufficient as-RNAs to degrade every mRNA, we speculate that silencing is induced by double-stranded RNA. The second class contains two T-DNAs which are arranged as inverted repeats (IRs). These IR loci are severely methylated and the as-Chs transgenes transcriptionally barely active. The strongest silencing was observed with IR loci in which the as-Chs transgenes were proximal to the centre of the IR. Similar features have been described for co-suppression by IRs composed of sense Chs transgenes, suggesting that silencing by antisense IRs also occurs by co-suppression, either via ectopic DNA pairing or via dsRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyltransferases / genetics
  • Acyltransferases / metabolism
  • DNA Methylation
  • DNA, Bacterial / genetics*
  • Gene Silencing*
  • RNA Processing, Post-Transcriptional*
  • RNA, Antisense / genetics*
  • Transcription, Genetic
  • Transgenes*

Substances

  • DNA, Bacterial
  • RNA, Antisense
  • T-DNA
  • Acyltransferases
  • flavanone synthetase