Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;66(2):91-103.
doi: 10.1016/s0024-3205(99)00314-8.

GIP biology and fat metabolism

Affiliations
Free article
Review

GIP biology and fat metabolism

R G Yip et al. Life Sci. 2000.
Free article

Abstract

The gastrointestinal hormone, gastric inhibitory polypeptide (GIP), is synthesized and released from the duodenum and proximal jejunum postprandially. Its release depends upon several factors including meal content and pre-existing health status (ie. obesity, diabetes, age, etc.). It was initially discovered and named for its gastric acid inhibitory properties. However, its more physiologically relevant role appears to be as an insulinotropic agent with a stimulatory effect on insulin release and synthesis. Accordingly, it was later renamed glucose-dependent insulinotropic polypeptide because its action on insulin release depends upon an increase in circulating levels of glucose. GIP is considered to be one of the principle incretin factors of the enteroinsular axis. The GIP receptor is a G-protein-coupled receptor belonging to the family of secretin/VIP receptors. GIP receptor mRNA is widely distributed in peripheral organs, including the pancreas, gut, adipose tissue, heart, adrenal cortex, and brain, suggesting it may have other functions in addition to the ones mentioned above. An overactive enteroinsular axis has been suggested to play a role in the pathogenesis of diabetes and obesity. In addition to stimulating insulin release, GIP has been shown to amplify the effect of insulin on target tissues. In adipose tissue, GIP has been reported to (1) stimulate fatty acid synthesis, (2) enhance insulin-stimulated incorporation of fatty acids into triglycerides, (3) increase insulin receptor affinity, and (4) increase sensitivity of insulin-stimulated glucose transport. In addition, although controversial, lipolytic properties of GIP have been proposed. The mechanism of action of GIP-induced effects on adipocytes is unknown, and it is unclear whether these effects of GIP on adipocytes are direct or indirect. However, there is now evidence that GIP receptors are expressed on adipocytes and that these receptors respond to GIP stimulation. Given the location of its release and the timing of its release, GIP is an ideal anabolic agent and expanding our understanding of its physiology will be needed to determine its exact role in the etiology of diabetes mellitus and obesity.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources