Ontogeny of orientation flight in the honeybee revealed by harmonic radar

Nature. 2000 Feb 3;403(6769):537-40. doi: 10.1038/35000564.


Cognitive ethology focuses on the study of animals under natural conditions to reveal ecologically adapted modes of learning. But biologists can more easily study what an animal learns than how it learns. For example, honeybees take repeated 'orientation' flights before becoming foragers at about three weeks of age. These flights are a prerequisite for successful homing. Little is known about these flights because orienting bees rapidly fly out of the range of human observation. Using harmonic radar, we show for the first time a striking ontogeny to honeybee orientation flights. With increased experience, bees hold trip duration constant but fly faster, so later trips cover a larger area than earlier trips. In addition, each flight is typically restricted to a narrow sector around the hive. Orientation flights provide honeybees with repeated opportunities to view the hive and landscape features from different viewpoints, suggesting that bees learn the local landscape in a progressive fashion. We also show that these changes in orientation flight are related to the number of previous flights taken instead of chronological age, suggesting a learning process adapted to changes in weather conditions, flower availability and the needs of bee colonies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animal Communication
  • Animals
  • Bees / physiology*
  • Feeding Behavior / physiology
  • Female
  • Flight, Animal / physiology*
  • Learning / physiology
  • Orientation / physiology
  • Radar