Hybrid and complex glycans are linked to the conserved N-glycosylation site of the third eight-cysteine domain of LTBP-1 in insect cells

Biochemistry. 2000 Feb 22;39(7):1596-603. doi: 10.1021/bi9918285.


Covalent association of LTBP-1 (latent TGF-beta binding protein-1) to latent TGF-beta is mediated by the third eight-cysteine (also referred to as TB) module of LTBP-1, a domain designated as CR3. Spodoptera frugiperda (Sf9) cells have proved a suitable cell system in which to study this association and to produce recombinant CR3, and we show here that another lepidopteran cell line, Trichoplusia niTN-5B1-4 (High-Five) cells, allows the recovery of large amounts of functional recombinant CR3. CR3 contains an N-glycosylation site, which is conserved in all forms of LTBP known to date. When we examined the status of this N-glycosylation using MALDI-TOF mass spectrometry and enzymatic analysis, we found that CR3 is one of the rare recombinant peptides modified with complex glycans in insect cells. Sf9 cells mainly processed the fucosylated paucomannosidic structure (GlcNAc)(2)(Mannose)(3)Fucose, although hybrid and complex N-glycosylations were also detected. In High-Five cells, the peptide was found to be modified with a wide variety of hybrid and complex sugars in addition to paucomanosidic oligosaccharides. Most glycans had one or two fucose residues bound through alpha1,3 and alpha1,6 linkages to the innermost GlcNAc. On the basis of these results and on the structure of an eight-cysteine domain from fibrillin-1, we present a model of glycosylated CR3 and discuss the role of glycosylation in eight-cysteine domain protein-protein interactions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Baculoviridae / genetics
  • Carbohydrate Conformation
  • Carrier Proteins / chemistry
  • Carrier Proteins / genetics*
  • Carrier Proteins / metabolism*
  • Cell Line
  • Chromatography, High Pressure Liquid
  • Conserved Sequence
  • Cysteine / chemistry
  • Cysteine / genetics
  • Cysteine / metabolism*
  • Glycosylation
  • Humans
  • Intracellular Signaling Peptides and Proteins*
  • Latent TGF-beta Binding Proteins
  • Molecular Sequence Data
  • Oligosaccharides / chemistry
  • Peptide Fragments / biosynthesis
  • Peptide Fragments / chemistry
  • Peptide Fragments / genetics
  • Peptide Fragments / metabolism
  • Polysaccharides / chemistry
  • Polysaccharides / genetics*
  • Polysaccharides / metabolism*
  • Protein Structure, Tertiary
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / metabolism*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Spodoptera / genetics
  • Transforming Growth Factor beta / metabolism


  • Carrier Proteins
  • Intracellular Signaling Peptides and Proteins
  • LTBP1 protein, human
  • Latent TGF-beta Binding Proteins
  • Oligosaccharides
  • Peptide Fragments
  • Polysaccharides
  • Recombinant Fusion Proteins
  • Transforming Growth Factor beta
  • Cysteine