Environmental influences on the development of the cardiac system in fish and amphibians

Comp Biochem Physiol A Mol Integr Physiol. 1999 Dec;124(4):407-12. doi: 10.1016/s1095-6433(99)00132-4.

Abstract

In poikilothermic animals body temperature varies with environmental temperature, and this results in a change in metabolic activity (Q10 of enzymatic reactions typically is around 2-3). Temperature changes also modify gas transport in body fluids. While the diffusion coefficient increases with increasing temperatures, physical solubility and also hemoglobin oxygen affinity decrease. Therefore, an increase in temperature typically requires adjustments in cardiac activity because ventilatory and convectional transport of respiratory gases usually are tightly coupled in adults in order to meet the oxygen demand of body tissues. Hypoxic conditions also provoke adaptations in the central circulatory system, like the hypoxic bradycardia, which has been described for many adult lower vertebrates, combined with an increase in stroke volume and peripheral resistance. In embryos and larvae the situation is much more complicated, because nervous control of the heart is established only late during development, and because the site of gas exchange changes from mainly cutaneous gas exchange during early development to mainly pulmonary or branchial gas exchange in late stages. In addition, recent studies in amphibian and fish embryos and larvae reveal, that at least in very early stages convectional gas transport of the hemoglobin is not essential, which means that in these early stages ventilatory and convectional gas transport are not yet coupled. Accordingly, in early stages of fish and amphibians the central cardiac system often does not respond to hypoxia, although in some species behavioral adaptations indicate that oxygen sensors are functional. If a depression of cardiac activity is observed, it most likely is a direct effect of oxygen deficiency on the cardiac myocytes. Regulated cardiovascular responses to hypoxia appear only in late stages and are similar to those found in adult species.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amphibians / physiology*
  • Animals
  • Environment*
  • Fishes / physiology*
  • Heart / growth & development*
  • Heart / physiology*
  • Oxygen Consumption / physiology
  • Temperature