Iso-mechanism of nitroalkane oxidase: 1. Inhibition studies and activation by imidazole

Biochemistry. 2000 Feb 15;39(6):1400-5. doi: 10.1021/bi9922547.

Abstract

The flavoprotein nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to aldehydes and ketones, respectively, transferring electrons to oxygen to form hydrogen peroxide. The steady-state kinetic mechanism of the active flavin adenine dinucleotide-(FAD-) containing form of the enzyme has been determined with nitroethane at pH 7 to be bi-ter ping-pong, with oxygen reacting with the free reduced enzyme after release of the aldehyde product. The V(max) value is 5.5 +/- 0.3 s(-)(1) and the K(m) values for nitroethane and oxygen are 3.3 +/- 0.6 and 0.023 +/- 0.007 mM, respectively. The free reduced enzyme forms a dead-end complex with nitroethane, with a K(ai) value of 30 +/- 6 mM. Acetaldehyde and butyraldehyde are noncompetitive inhibitors versus nitroethane due to formation of a dead-end complex between the oxidized enzyme and the product. Acetaldehyde is an uncompetitive inhibitor versus oxygen, indicating that an irreversible isomerization of the free reduced enzyme occurs before the reaction with oxygen. Addition of unprotonated imidazole results in a 5-fold increase in the V(max) value, while the V/K values for nitroethane and oxygen are unaffected. A 5-fold increase in the K(ai) value for nitroethane and a 6.5-fold increase in the K(ii) value for butyraldehyde are observed in the presence of imidazole. These results are consistent with the isomerization of the free reduced enzyme being about 80% rate-limiting for catalysis and with a model in which unprotonated imidazole accelerates the rate of isomerization.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetaldehyde / chemistry
  • Binding, Competitive
  • Dioxygenases*
  • Enzyme Activation / drug effects
  • Enzyme Inhibitors / chemistry*
  • Ethane / analogs & derivatives
  • Ethane / chemistry
  • Flavin-Adenine Dinucleotide / chemistry
  • Fusarium / enzymology
  • Imidazoles / chemistry*
  • Imidazoles / pharmacology
  • Kinetics
  • Nitrites / chemistry
  • Nitroparaffins / chemistry
  • Oxygenases / antagonists & inhibitors*
  • Oxygenases / chemistry*
  • Structure-Activity Relationship
  • Substrate Specificity

Substances

  • Enzyme Inhibitors
  • Imidazoles
  • Nitrites
  • Nitroparaffins
  • Flavin-Adenine Dinucleotide
  • nitroethane
  • imidazole
  • Oxygenases
  • Dioxygenases
  • 2-nitropropane dioxygenase
  • Acetaldehyde
  • Ethane