The meaning of diagnostic test results: a spreadsheet for swift data analysis

Clin Radiol. 2000 Mar;55(3):227-35. doi: 10.1053/crad.1999.0444.


Aims: To design a spreadsheet program to: (a) analyse rapidly diagnostic test result data produced in local research or reported in the literature; (b) correct reported predictive values for disease prevalence in any population; (c) estimate the post-test probability of disease in individual patients.

Materials and methods: Microsoft Excel(TM)was used. Section A: a contingency (2 x 2) table was incorporated into the spreadsheet. Formulae for standard calculations [sample size, disease prevalence, sensitivity and specificity with 95% confidence intervals, predictive values and likelihood ratios (LRs)] were linked to this table. The results change automatically when the data in the true or false negative and positive cells are changed. Section B: this estimates predictive values in any population, compensating for altered disease prevalence. Sections C-F: Bayes' theorem was incorporated to generate individual post-test probabilities. The spreadsheet generates 95% confidence intervals, LRs and a table and graph of conditional probabilities once the sensitivity and specificity of the test are entered. The latter shows the expected post-test probability of disease for any pre-test probability when a test of known sensitivity and specificity is positive or negative.

Results: This spreadsheet can be used on desktop and palmtop computers. The MS Excel(TM)version can be downloaded via the Internet from the URL

Conclusion: A spreadsheet is useful for contingency table data analysis and assessment of the clinical meaning of diagnostic test results.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bayes Theorem
  • Confidence Intervals
  • Data Interpretation, Statistical*
  • Humans
  • Likelihood Functions
  • Predictive Value of Tests
  • Radiology*
  • Sensitivity and Specificity
  • Software*