Stiffness, viscosity, and upper-limb inertia about the glenohumeral abduction axis

J Orthop Res. 2000 Jan;18(1):94-100. doi: 10.1002/jor.1100180114.

Abstract

To evaluate the dynamic properties of the shoulder and understand how they are controlled by the central nervous system, glenohumeral-joint stiffness and viscosity and upper-limb inertia were quantified under various levels of muscle contraction in seven healthy human subjects. Through a cast attachment, the upper limb was perturbed in a precise pattern by a computer-controlled servomotor to manifest the dynamic properties of the joint. The recorded joint position and torque were used to estimate joint stiffness and viscosity and upper-limb inertia. With moderate muscle contraction, the stiffness and viscosity increased several fold. A stiffer shoulder joint associated with stronger muscle contraction made the shoulder more stable and protected it from potential injuries during strenuous tasks. Joint viscosity, especially the stronger viscous damping associated with more strenuous contraction, smoothed shoulder movement and stabilized the joint. From the control viewpoint, the glenohumeral joint responded to the central nervous system more quickly with increasing muscle contraction, which was useful during strenuous tasks. On the other hand, the central nervous system controlled stiffness and viscosity synchronously so that it dealt with only a nearly constant damping ratio of the joint over various levels of contraction, which simplified its task substantially. This approach quantified the dynamic and static properties of the shoulder under various levels of contraction more accurately and completely than a manual test, and it can potentially be used to evaluate changes in these properties caused by musculoskeletal injuries and their surgical treatments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Brain / physiology
  • Humans
  • Male
  • Middle Aged
  • Muscle Contraction
  • Shoulder Joint / physiology*
  • Viscosity