The Gnas locus in distal mouse chromosome (Chr) 2 is emerging as a complex genomic region. It contains three imprinted genes in the order Nesp-Gnasxl-Gnas. Gnas encodes a G protein alpha-subunit, and Nesp and Gnasxl encode proteins of unknown function expressed in neuroendocrine tissue. Together, these genes form a single transcription unit because transcripts of Nesp and Gnasxl are alternatively spliced onto exon 2 of Gnas. Nesp and Gnasxl are expressed from opposite parental alleles, with Nesp encoding a maternal-specific transcript and Gnasxl encoding a paternal-specific transcript. We now identify a further imprinted transcript in this cluster. Reverse transcription-PCR analysis of Nesp expression in 15. 5-days-postcoitum embryos carrying only maternal or paternal copies of distal Chr 2 revealed an isoform that is exclusively paternally, rather than maternally, expressed. Strand-specific reverse transcription-PCR showed that this form is an antisense transcript. The existence of a paternally expressed antisense transcript was confirmed by Northern blot analysis. The sequence is contiguous with genomic sequence downstream of Nesp and encompasses Nesp exons 1 and 2 and an intervening intron. We propose that Nespas is an additional control element in the imprinting region of mouse distal Chr 2; it adds further complexity to the Gnas-imprinted gene cluster.