Effect of Predator-Prey Phylogenetic Similarity on the Fitness Consequences of Predation: A Trade-off Between Nutrition and Disease?

Am Nat. 2000 Mar;155(3):335-345. doi: 10.1086/303329.

Abstract

A largely neglected aspect of foraging behavior is whether the costs and benefits of predation vary as a function of phylogenetic (i.e., genetic) similarity between predator and prey. Prey of varying phylogenetic similarities to predators might differ in value because both the risk of pathogen transmission and the nutritional quality of prey typically decline with decreasing phylogenetic similarity between predator and prey. I experimentally evaluated this hypothesis by feeding omnivorous spadefoot toad tadpoles (Spea bombifrons, Spea multiplicata, and Scaphiopus couchii) either conspecific tadpoles or an equal mass of three different species of heterospecific prey, all of which contained naturally occurring bacteria. I also examined which prey species Spea tadpoles preferred. I found that all three species of tadpoles performed best on, and preferred to eat, prey that were of intermediate phylogenetic similarity to the predators. Prey of intermediate phylogenetic similarity may provide the greatest fitness benefits to predators because such prey balance the nutritional benefits of closely related prey with the cost of parasite transmission between closely related individuals.

Keywords: cannibalism; diet choice; disease transmission; parasites; phylogeny; trade‐offs.