Gliogenesis in the central nervous system

Glia. 2000 Apr;30(2):105-21. doi: 10.1002/(sici)1098-1136(200004)30:2<105::aid-glia1>;2-h.


Multipotential neuroepithelial stem cells are thought to give rise to all the differentiated cells of the central nervous system (CNS). The developmental potential of these multipotent stem cells becomes more restricted as they differentiate into progressively more committed cells and ultimately into mature neurons and glia. In studying gliogenesis, the optic nerve and spinal cord have become invaluable models and the progressive stages of differentiation are being clarified. Multiple classes of glial precursors termed glial restricted precursors (GRP), oligospheres, oligodendrocyte-type2 astrocyte (O-2A) and astrocyte precursor cells (APC) have been identified. Similar classes of precursor cells can be isolated from human neural stem cell cultures and from embryonic stem (ES) cell cultures providing a non-fetal source of such cells. In this review, we discuss gliogenesis, glial stem cells, putative relationships of these cells to each other, factors implicated in gliogenesis, and therapeutic applications of glial precursors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Central Nervous System / cytology*
  • Central Nervous System / embryology*
  • Humans
  • Neuroglia / cytology*
  • Stem Cells / cytology*