Morphological mechanisms for regulating blood flow through hepatic sinusoids

Liver. 2000 Feb;20(1):3-7. doi: 10.1034/j.1600-0676.2000.020001003.x.


This review summarizes what is known about the various morphological sites that regulate the distribution of blood flow to and from the sinusoids in the hepatic microvascular system. These sites potentially include the various segments of the afferent portal venules and hepatic arterioles, the sinusoids themselves, and central and hepatic venules. Given the paucity of smooth muscle in the walls of these vessels, various sinusoidal lining cells have been suggested to play a role in regulating the diameters of sinusoids and influencing the distribution and velocity of blood flow in these vessels. While sinusoidal endothelial cells have been demonstrated to be contractile and to exhibit sphincter function, attention has recently focused on the perisinusoidal stellate cell as the cell responsible for controlling the sinusoidal diameter. A very recent study, however, suggested that the principal site of vasoconstriction elicited by ET-1 was the pre-terminal portal venule. This raised the question of whether or not the diameters of sinusoids might decrease due to passive recoil when inflow is reduced or eliminated and intra-sinusoidal pressure falls. In more recent in vivo microscopic studies, clamping of the portal vein dramatically reduced sinusoidal blood flow as well as the diameters of sinusoids. The sinusoidal lumens rapidly returned to their initial diameters upon restoration of portal blood flow suggesting that sinusoidal blood pressure normally distends the sinusoidal wall which can recoil when the pressure drops. Stellate cells may be responsible for this reaction given the nature of their attachment to parenchymal cells by obliquely oriented microprojections from the lateral edges of their subendothelial processes. This suggests that care must be exercised when interpreting the mechanism for the reduction of sinusoidal diameters following drug administration without knowledge of changes occurring to the portal venous and hepatic inflow.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Endothelium, Vascular / physiology
  • Hepatic Artery / physiology
  • Hepatic Veins / physiology
  • Humans
  • Liver / blood supply*
  • Liver Circulation* / physiology
  • Microcirculation / physiology
  • Portal Vein / physiology