The role of 5-HT(1A) and 5-HT(1B/1D) receptors on the modulation of acute fluoxetine-induced changes in extracellular 5-HT: the mechanism of action of (+/-)pindolol

Neuropharmacology. 2000 Apr 3;39(6):1044-52. doi: 10.1016/s0028-3908(99)00192-6.

Abstract

Some clinical evidence has suggested that (+/-)pindolol can be effective at producing a shortened time to onset of antidepressant activity when co-administered with a serotonin specific reuptake inhibitor (SSRI). This effect has been attributed to the antagonist effects of pindolol at the 5-HT(1A) receptor. In the present study, we compared the pharmacology of (+/-)pindolol, WAY-100635 (a 5-HT(1A) antagonist), GR127935 (a 5-HT(1B/1D) antagonist), and isamoltane (a 5-HT(1B) antagonist), when given acutely in combination with fluoxetine, using in vivo microdialysis in the frontal cortex of the freely moving rat. We have determined that the acute fluoxetine-induced increases in extracellular 5-HT can be augmented by (+/-)pindolol, WAY100635, GR127935 and isamoltane with maximum increases of 216+/-32%, 235+/-49%, 240+/-18% and 171+/-47% of preinjection control levels, respectively. Combination of both 5-HT(1A) and 5-HT(1B/1D) autoreceptor antagonists with fluoxetine produced additive increases in extracellular 5-HT (i.e. WAY100635+GR127935+fluoxetine and WAY100635+isamoltane+fluoxetine produced a four- and five-fold potentiation, respectively), suggesting that this strategy may be useful in further augmenting the action of a SSRI in the treatment of depression. In addition, by comparing the combined administration of (+/-)pindolol with either WAY100635, GR127935 or isamoltane, we have determined that (+/-)pindolol produces much of its acute potentiation of fluoxetine-induced increases in extracellular 5-HT via its action at the 5-HT(1B/D) receptor in addition to any activity it has at the presynaptic 5-HT(1A) receptor.

MeSH terms

  • Animals
  • Autoreceptors / physiology
  • Drug Synergism
  • Extracellular Space / metabolism
  • Fluoxetine / pharmacology*
  • Male
  • Microdialysis
  • Oxadiazoles / pharmacology
  • Pindolol / pharmacology*
  • Piperazines / pharmacology
  • Propanolamines / pharmacology
  • Pyridines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Serotonin, 5-HT1B
  • Receptor, Serotonin, 5-HT1D
  • Receptors, Serotonin / physiology*
  • Receptors, Serotonin, 5-HT1
  • Selective Serotonin Reuptake Inhibitors / pharmacology*
  • Serotonin / metabolism*
  • Serotonin Antagonists / pharmacology*

Substances

  • Autoreceptors
  • Oxadiazoles
  • Piperazines
  • Propanolamines
  • Pyridines
  • Receptor, Serotonin, 5-HT1B
  • Receptor, Serotonin, 5-HT1D
  • Receptors, Serotonin
  • Receptors, Serotonin, 5-HT1
  • Serotonin Antagonists
  • Serotonin Uptake Inhibitors
  • Fluoxetine
  • GR 127935
  • Serotonin
  • N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide
  • isamoltane
  • Pindolol