Superiority of denaturing high performance liquid chromatography over single-stranded conformation and conformation-sensitive gel electrophoresis for mutation detection in TSC2

Ann Hum Genet. 1999 Sep;63(Pt 5):383-91. doi: 10.1046/j.1469-1809.1999.6350383.x.


We evaluated denaturing high pressure liquid chromatography (DHPLC) as a scanning method for mutation detection in TSC2, and compared it to conformation-sensitive gel electrophoresis (CSGE) and single-stranded conformation polymorphism analysis (SSCP). The first 20 exons of TSC2 were amplified from 84 TSC patients and screened initially by CSGE and then by DHPLC. Optimization of DHPLC analysis of each exon was carried out by design of primers with minimum variation in the melting temperature of the amplicon, and titration of both elution gradient and temperature. CSGE analysis identified 40 shifts (21 unique) in the 84 patients and 20 exons. All of these variants were detected by DHPLC, and an additional 27 changes (14 unique) were identified. Overall 15 of 28 (54%) unique single base substitutions were detected by CSGE; all were detected by DHPLC. 25 definite or probable mutations were found in these 84 patients (30%) in exons 1-20 of TSC2. In a subsequent blinded analysis of 15 samples with 18 distinct TSC2 sequence variants originally detected by SSCP in another centre, all variants were detected by DHPLC except one where the variation occurred within the primer. Ten other (7 unique) sequence variants were detected in these samples which had not been detected by SSCP. Overall, 11 of 16 (69%) unique single base substitutions were detected by SSCP; all were detected by DHPLC. We conclude that DHPLC is superior to both CSGE and SSCP for detection of DNA sequence variation in TSC2, particularly for single base substitution mutations.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chromatography, High Pressure Liquid / methods*
  • DNA Mutational Analysis / economics
  • DNA Mutational Analysis / methods*
  • Electrophoresis, Polyacrylamide Gel / methods*
  • Humans
  • Polymorphism, Genetic
  • Polymorphism, Single-Stranded Conformational*
  • Proteins / genetics
  • Repressor Proteins / genetics*
  • Reproducibility of Results
  • Temperature
  • Tuberous Sclerosis / genetics
  • Tuberous Sclerosis Complex 1 Protein
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins


  • Proteins
  • Repressor Proteins
  • TSC2 protein, human
  • Tuberous Sclerosis Complex 1 Protein
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins