Characteristics of reliable tone-evoked oscillations in the rat thalamo-cortical auditory system

Hear Res. 2000 Apr;142(1-2):113-30. doi: 10.1016/s0378-5955(00)00016-2.


Tone-evoked oscillations were studied from simultaneous recordings collected in the auditory cortex, auditory thalamus and auditory sector of the reticular nucleus in urethane anesthetized rats. These oscillations were precisely time-locked to tone onset and were easily observed on peristimulus time histograms (PSTHs). Visual inspection of PSTHs and rasters led us to distinguish between 'reliable' oscillations (which exhibited oscillatory patterns in more than 50% of the trials) and 'labile' oscillations (which exhibited oscillations in less than 50% of the trials). Systematic quantification of oscillations based on several indices derived from power spectra confirmed this distinction. 'Reliable' stimulus-locked oscillations were observed in 51/184 (28%) of the recordings from auditory cortex, 9/55 (17%) of the recordings from auditory thalamus and 11/26 (42%) of the recordings from the auditory sector of the reticular nucleus. The frequency range of these oscillations was the same in the three structures (5-14 Hz). Within the same animal, when one electrode exhibited oscillations, there was a high probability of detecting similar oscillations from electrodes located in the same structure, but not from electrodes located in the other structures. These oscillations were observed for pure tone frequency (or for clicks) whatever the tone duration (1 s, 100 ms, 10 ms). The inter-tone interval (ITI) was found to be the critical factor controlling the occurrence of these oscillations: they were present for ITIs of 2 s or longer, but were absent for ITIs of 1 s or less. In contrast, the occurrence of the oscillations was a function neither of the strength of the 'on' evoked response nor of the animal's temperature. However, lowering the animal's temperature from 37-38 degrees C to 35-36 degrees C systematically led to a decrease in the frequency and an increase in the duration of the tone-evoked oscillations. These results suggest that, even in well defined conditions (temperature, EEG, ITI, level of anesthesia), the oscillations triggered by presentation of the same stimulus can be stable or unstable. This temporal instability of stimulus-evoked oscillations has to be taken into account before stating percentages of oscillations in a given brain structure. They also suggest that some general factors such as the animals temperature or the inter-stimulus interval can considerably affect their characteristics and/or their occurrence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Animals
  • Auditory Pathways / physiology*
  • Body Temperature / physiology
  • Electrophysiology / methods
  • Evoked Potentials, Auditory / physiology
  • Oscillometry
  • Rats
  • Reaction Time / physiology
  • Thalamic Nuclei / physiology
  • Thalamus / physiology*