Most Burkholderia cepacia strains are resistant to many, or all, of the antibacterial agents commonly used in cystic fibrosis (CF), and selection of appropriate antibiotics for treatment of pulmonary exacerbations is therefore difficult. We developed a technique for rapid in vitro testing of multiple antibiotic combinations for B. cepacia isolates. For each of 119 multi-drug-resistant isolates of B. cepacia, our multiple combination bactericidal test (MCBT) studied the bactericidal activity of 10 to 15 antimicrobial agents using 225 +/- 97 single, double, and triple antibiotic combinations. Of the 119 isolates, 50% were resistant to all single antibiotics tested, 8% were resistant to all two-drug antibiotic combinations, but all were inhibited by at least one bactericidal triple-drug combination. When used alone, meropenem, ceftazidime and high-dose tobramycin (200 microg/ml) were bactericidal against only 47, 15, and 14% of in vitro isolates, respectively. Using a double antibiotic combination improved bactericidal activity; meropenem-minocycline, meropenem-amikacin, and meropenem-ceftazidime combinations were bactericidal against 76, 73, and 73% of isolates, respectively. However, 47% of isolates demonstrated antagonism (growth of an organism when a second antibiotic was added to a bactericidal single antibiotic). Triple antibiotic combinations that contained tobramycin, meropenem, and an additional antibiotic were most effective, and were bactericidal against 81 to 93% of isolates. We conclude that triple-antibiotic combinations are more likely than double and single antibiotic combinations to be bactericidal against B. cepacia in vitro. MCBT testing is a useful technique to help clinicians decide on appropriate nonantagonistic combination antibiotic therapy for patients with CF infected with B. cepacia.