Blood hemostasis in exercise and training

Med Sci Sports Exerc. 2000 May;32(5):918-25. doi: 10.1097/00005768-200005000-00007.

Abstract

Formation of the blood clot is a slow but normal physiological process occurring as a result of the activation of blood coagulation pathways. Nature's guard against unwanted blood clots is the fibrinolytic enzyme system. In healthy people, there is a delicate dynamic balance between blood clot formation and blood clot dissolution. Available evidence suggests that exercise and physical training evoke multiple effects on blood hemostasis in normal healthy subjects and in patients. A single bout of exercise is usually associated with a transient increase in blood coagulation as evidenced by a shortening of activated partial thromboplastin time (APTT) and increased Factor VIII (FVIII). The rise in FVIII is intensity dependent and continues into recovery. The effects of acute exercise on plasma fibrinogen have yielded conflicting results. Thus, the issue of whether exercise-induced blood hypercoagulability in vitro mirrors an in vivo thrombin generation and fibrin formation remains disputable. Exercise-induced enhancement of fibrinolysis has been repeatedly demonstrated using a wide range of exercise protocols incorporating various exercise intensities and durations. Moderate exercise appears to enhance blood fibrinolytic activity without a concomitant activation of blood coagulation mechanisms, whereas, very heavy exercise induces simultaneous activation of blood fibrinolysis and coagulation. The increase in fibrinolysis is due to a rise in tissue-type plasminogen activator (tPA) and decrease in plasminogen activator inhibitor (PAI). The mechanism of exercise-induced hyperfibrinolysis is poorly understood, and the physiological utility of such activation remains unresolved. Strenuous exercise elicits a transient increase in platelet count, but there are conflicting results concerning the effect of exercise on platelet aggregation and activation. Few comprehensive studies exist concerning the influence of exercise training on blood hemostasis, making future investigation necessary to identify whether there are favorable effects of exercise training on blood coagulation, fibrinolysis, and platelet functions.

Publication types

  • Review

MeSH terms

  • Exercise / physiology*
  • Hemostasis / physiology*
  • Humans