Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 10;271(2):374-9.
doi: 10.1006/bbrc.2000.2627.

Natriuretic peptide receptor-A negatively regulates mitogen-activated protein kinase and proliferation of mesangial cells: role of cGMP-dependent protein kinase

Affiliations

Natriuretic peptide receptor-A negatively regulates mitogen-activated protein kinase and proliferation of mesangial cells: role of cGMP-dependent protein kinase

K N Pandey et al. Biochem Biophys Res Commun. .

Abstract

We have examined the effect of atrial natriuretic peptide (ANP) and its guanylyl cyclase/natriuretic peptide receptor-A (NPRA) on mitogen-activated protein kinase/extracellular signal-regulated kinase 2 (MAPK/ERK2) activity in rat mesangial cells overexpressing NPRA. Agonist hormones such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), angiotensin II (ANG II), and endothelin-1 (ET-1) stimulated 2.5- to 3.5-fold immunoreactive MAPK/ERK2 activity in these cells. ANP inhibited agonist-stimulated activity of MAPK/ERK2 by 65-75% in cells overexpressing NPRA, whereas in vector-transfected cells, its inhibitory effect was only 18-20%. NPRA antagonist A71915 and KT5823, a specific inhibitor of cGMP-dependent protein kinase (PKG) completely reversed the inhibitory effect of ANP on MAPK/ERK2 activity. ANP also inhibited the PDGF-stimulated [(3)H]thymidine uptake by almost 70% in cells overexpressing NPRA, as compared with only 20-25% inhibition in vector-transfected cells. These results demonstrate that ANP/NPRA system negatively regulates MAPK/ERK2 activity and proliferation of mesangial cells in a PKG-dependent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources