The antioxidant properties of zinc

J Nutr. 2000 May;130(5S Suppl):1447S-54S. doi: 10.1093/jn/130.5.1447S.


The ability of zinc to retard oxidative processes has been recognized for many years. In general, the mechanism of antioxidation can be divided into acute and chronic effects. Chronic effects involve exposure of an organism to zinc on a long-term basis, resulting in induction of some other substance that is the ultimate antioxidant, such as the metallothioneins. Chronic zinc deprivation generally results in increased sensitivity to some oxidative stress. The acute effects involve two mechanisms: protection of protein sulfhydryls or reduction of (*)OH formation from H(2)O(2) through the antagonism of redox-active transition metals, such as iron and copper. Protection of protein sulfhydryl groups is thought to involve reduction of sulfhydryl reactivity through one of three mechanisms: (1) direct binding of zinc to the sulfhydryl, (2) steric hindrance as a result of binding to some other protein site in close proximity to the sulfhydryl group or (3) a conformational change from binding to some other site on the protein. Antagonism of redox-active, transition metal-catalyzed, site-specific reactions has led to the theory that zinc may be capable of reducing cellular injury that might have a component of site-specific oxidative damage, such as postischemic tissue damage. Zinc is capable of reducing postischemic injury to a variety of tissues and organs through a mechanism that might involve the antagonism of copper reactivity. Although the evidence for the antioxidant properties of zinc is compelling, the mechanisms are still unclear. Future research that probes these mechanisms could potentially develop new antioxidant functions and uses for zinc.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Free Radicals / metabolism
  • Humans
  • Oxidation-Reduction / drug effects
  • Trace Elements / pharmacology
  • Trace Elements / physiology
  • Zinc / chemistry
  • Zinc / deficiency
  • Zinc / pharmacology*
  • Zinc / physiology


  • Antioxidants
  • Free Radicals
  • Trace Elements
  • Zinc