Structural studies of recombinant Norwalk capsids

J Infect Dis. 2000 May:181 Suppl 2:S317-21. doi: 10.1086/315576.

Abstract

Norwalk virus is the major cause of epidemic viral gastroenteritis in humans. Attempts to grow this human virus in laboratory cell lines have been unsuccessful; however, the Norwalk virus capsid protein, when expressed in insect cells infected with a recombinant baculovirus, spontaneously assembles into virus-like particles. The x-ray crystallographic structure of these recombinant Norwalk particles has been determined to 3.4 A, using a 22-A electron cryomicroscopy structure as a phasing model. The recombinant capsids, 380 A in diameter, exhibit a T=3 icosahedral symmetry. The capsid is formed by 90 dimers of the capsid protein, each of which forms an arch-like capsomere. The capsid protein has two distinct domains-a shell (S) and a protruding (P) domain-that are connected by a flexible hinge. Although the S domain has a classical beta-sandwich fold, the structure of the P domain is unlike any other viral protein. One of the subdomains in the P domain formed by the most variable part of the sequence is located at the exterior of the capsid.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Capsid / chemistry*
  • Crystallography, X-Ray
  • Norwalk virus / chemistry*
  • Recombinant Proteins / chemistry

Substances

  • Recombinant Proteins