Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6475-80. doi: 10.1073/pnas.110568497.

Abstract

The molybdenum cofactor (Moco), a highly conserved pterin compound coordinating molybdenum (Mo), is required for the enzymatic activities of molybdoenzymes. In all organisms studied so far Moco is synthesized by a unique and evolutionary old multistep pathway that requires the activities of at least six gene products. In eukaryotes, the last step of Moco synthesis, i.e., transfer and insertion of Mo into molybdopterin (MPT), is catalyzed by the two-domain proteins Cnx1 in plants and gephyrin in mammals. Both domains (E and G) of these proteins are able to bind MPT in vitro. Here, we show the identification and mutational dissection of functionally important regions within the Cnx1 G domain that are essential for MPT binding, the conversion of MPT to Moco, and Moco stabilization. By functional screening for mutants in the Cnx1 G domain that are no longer able to complement Escherichia coli mogA mutants, we found two classes of mutations in highly conserved amino acid residues. (i) The first class affects in vitro binding of MPT to the protein and the stabilization of Moco, the product of the G domain. (ii) The second class is represented by two independent mutations in the aspartate 515 position that is not affected in MPT binding and Moco stabilization; rather the conversion of MPT to Moco by using bound MPT and a yet unknown form of Mo is completely abolished. The results presented here provide biochemical evidence for a purified Cnx1 G domain catalyzing the insertion of Mo into MPT.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis Proteins*
  • Calnexin*
  • Coenzymes*
  • Membrane Proteins / chemistry
  • Membrane Proteins / physiology*
  • Metalloproteins / chemistry*
  • Metalloproteins / metabolism*
  • Molecular Sequence Data
  • Molybdenum / metabolism*
  • Molybdenum Cofactors
  • Mutation
  • Plant Proteins / chemistry
  • Plant Proteins / physiology*
  • Pteridines / chemistry*
  • Pteridines / metabolism*

Substances

  • Arabidopsis Proteins
  • CNX1 protein, Arabidopsis
  • Coenzymes
  • Membrane Proteins
  • Metalloproteins
  • Molybdenum Cofactors
  • Plant Proteins
  • Pteridines
  • Calnexin
  • Molybdenum
  • molybdenum cofactor