Effect of age on the profile of alkanes in normal human breath

Free Radic Res. 2000 Jul;33(1):57-63. doi: 10.1080/10715760000300611.


Ethane and pentane in breath are markers of oxidative stress, produced by ROS-mediated lipid peroxidation of n-3 and n-6 polyunsaturated fatty acids (PUFAs), but little is known about other n-alkanes in normal human breath. We investigated the spectrum of alkanes in normal human alveolar breath, and their variation with age. Fifty normal humans were studied (age range 23-75, median 35). Volatile organic compounds (VOCs) in alveolar breath were captured on sorbent traps and assayed by gas chromatography and mass spectroscopy. Alveolar gradients (concentration in breath minus concentration in ambient room air) of alkanes were determined. C4-C20 alkanes were observed in breath and room air. Their mean alveolar gradients were negative from C4 to C12 and positive from C13 to C20. The mean alveolar gradients of four alkanes (C5-C8) were significantly less negative in the older subjects (p < 0.05). There were no significant differences between males and females. Normal human breath contained a spectrum of alkanes which may include new markers of oxidative stress. The mean rate of clearance (via cytochrome p450) exceeded the mean rate of synthesis (by ROS-mediated oxidative stress) for C4-C12 alkanes, while synthesis was greater than clearance for C13-C20 alkanes. The elevated alkane profile in older subjects was consistent with an age-related increase in oxidative stress, though an age-related decline in alkane clearance rate may have contributed.

MeSH terms

  • Adult
  • Aged
  • Aging / metabolism*
  • Alkanes / chemistry
  • Alkanes / metabolism*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism
  • Respiration


  • Alkanes
  • Reactive Oxygen Species