Estimating stature in fossil hominids: which regression model and reference sample to use?

J Hum Evol. 2000 Jun;38(6):767-84. doi: 10.1006/jhev.1999.0382.

Abstract

coResearchers have long appreciated the significant relationship between body size and an animal's overall adaptive strategy and life history. However, much more emphasis has been placed on interpreting body size than on the actual calculation of it. One measure of size that is especially important for human evolutionary studies is stature. Despite a long history of investigation, stature estimation remains plagued by two methodological problems: (1) the choice of the statistical estimator, and (2) the choice of the reference population from which to derive the parameters. This work addresses both of these problems in estimating stature for fossil hominids, with special reference to A.L. 288-1 (Australopithecus afarensis) and WT 15000 (Homo erectus). Three reference samples of known stature with maximum humerus and femur lengths are used in this study: a large (n=2209) human sample from North America, a smaller sample of modern human pygmies (n=19) from Africa, and a sample of wild-collected African great apes (n=85). Five regression techniques are used to estimate stature in the fossil hominids using both univariate and multivariate parameters derived from the reference samples: classical calibration, inverse calibration, major axis, reduced major axis and the zero-intercept ratio model. We also explore a new diagnostic to test extrapolation and allometric differences with multivariate data, and we calculate 95% confidence intervals to examine the range of variation in estimates for A.L. 288-1, WT 15000 and the new Bouri hominid (contemporary with [corrected] Australopithecus garhi). Results frequently vary depending on whether the data are univariate or multivariate. Unique limb proportions and fragmented remains complicate the choice of estimator. We are usually left in the end with the classical calibrator as the best choice. It is the maximum likelihood estimator that performs best overall, especially in scenarios where extrapolation occurs away from the mean of the reference sample. The new diagnostic appears to be a quick and efficient way to determine at the outset whether extrapolation exists in size and/or shape of the long bones between the reference sample and the target specimen.

MeSH terms

  • Animals
  • Body Weights and Measures / standards
  • Femur / anatomy & histology
  • Fossils*
  • Hominidae / anatomy & histology*
  • Humans
  • Humerus / anatomy & histology
  • Models, Biological
  • Models, Statistical
  • Reference Standards
  • Regression Analysis*