Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast
- PMID: 10839818
- PMCID: PMC98995
- DOI: 10.1128/MMBR.64.2.281-315.2000
Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast
Abstract
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.
Similar articles
-
The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway.EMBO J. 2000 Feb 15;19(4):767-75. doi: 10.1093/emboj/19.4.767. EMBO J. 2000. PMID: 10675346 Free PMC article.
-
Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.Mol Cell Biol. 2002 Jun;22(12):4086-93. doi: 10.1128/MCB.22.12.4086-4093.2002. Mol Cell Biol. 2002. PMID: 12024022 Free PMC article.
-
A "petite obligate" mutant of Saccharomyces cerevisiae: functional mtDNA is lethal in cells lacking the delta subunit of mitochondrial F1-ATPase.J Biol Chem. 2006 Jun 16;281(24):16305-13. doi: 10.1074/jbc.M513805200. Epub 2006 Apr 11. J Biol Chem. 2006. PMID: 16608846
-
The petite mutation in yeasts: 50 years on.Int Rev Cytol. 2000;194:197-238. doi: 10.1016/s0074-7696(08)62397-9. Int Rev Cytol. 2000. PMID: 10494627 Review.
-
Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology.Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1086-98. doi: 10.1016/j.bbabio.2009.12.019. Epub 2010 Jan 4. Biochim Biophys Acta. 2010. PMID: 20056105 Review.
Cited by
-
Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae.Microb Cell. 2020 Jun 30;7(9):234-249. doi: 10.15698/mic2020.09.729. Microb Cell. 2020. PMID: 32904421 Free PMC article.
-
Molecular Basis of the Pathogenic Mechanism Induced by the m.9191T>C Mutation in Mitochondrial ATP6 Gene.Int J Mol Sci. 2020 Jul 18;21(14):5083. doi: 10.3390/ijms21145083. Int J Mol Sci. 2020. PMID: 32708436 Free PMC article.
-
Comparative analysis of 43 distinct RNA modifications by nanopore tRNA sequencing.bioRxiv [Preprint]. 2024 Jul 24:2024.07.23.604651. doi: 10.1101/2024.07.23.604651. bioRxiv. 2024. PMID: 39091754 Free PMC article. Preprint.
-
Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1.J Biol Chem. 2010 Apr 9;285(15):11445-57. doi: 10.1074/jbc.M109.065425. Epub 2010 Feb 11. J Biol Chem. 2010. PMID: 20150421 Free PMC article.
-
Candida tropicalis Etr1p and Saccharomyces cerevisiae Ybr026p (Mrf1'p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence.Mol Cell Biol. 2001 Sep;21(18):6243-53. doi: 10.1128/MCB.21.18.6243-6253.2001. Mol Cell Biol. 2001. PMID: 11509667 Free PMC article.
References
-
- Ackerman S H, Gatti D L, Gellefors P, Douglas M G, Tzagoloff A. ATP13, a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. FEBS Lett. 1991;278:234–238. - PubMed
-
- Ackerman S H, Martin J, Tzagoloff A. Characterization of ATP11 and detection of the encoded protein in mitochondria of Saccharomyces cerevisiae. J Biol Chem. 1992;267:7386–7394. - PubMed
-
- Ackerman S H, Tzagoloff A. ATP10, a yeast nuclear gene required for the assembly of the mitochondrial F1-F0 complex. J Biol Chem. 1990;265:9952–9959. - PubMed
-
- Arlt H, Tauer R, Feldmann H, Neupert W, Langer T. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell. 1996;85:875–885. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
