Neuroendocrine changes in colon of mice with a disrupted IL-2 gene

Clin Exp Immunol. 2000 Jun;120(3):424-33. doi: 10.1046/j.1365-2249.2000.01255.x.

Abstract

Neuroendocrine peptides have a variety of physiological functions in the gastrointestinal tract. This study was carried out to investigate the impact of IL-2 deficiency on the neuroendocrine system in normal colon, and the neuroendocrine changes during colonic inflammation. Mice with homozygous disrupted IL-2 gene (IL-2-/-) spontaneously developed a bowel disease with similarities to human ulcerative colitis. Different types of colonic endocrine cells and myenteric nerves were analysed in the IL-2-/- mice using immunomorphometry. The neuropeptide contents in the colonic tissues were determined by radioimmunoassay. Age-matched healthy IL-2+/- and IL-2+/+ mice served as controls and the colonic IL-2 levels were compared between these two groups of mice by ELISA. Our data showed that less than half the amount of IL-2 was synthesized in the colon of IL-2+/- mice compared with the IL-2+/+ wild-type mice. Two major differences in the neuroendocrine colon were found between the mice with an intact and disrupted IL-2 gene. One was age-related. The frequencies of various endocrine cells and myenteric nerves increased with age in the IL-2+/+ mice. However, no such increases were seen in the mice with a disrupted IL-2 gene. Instead, the volume densities of enteroglucagon, serotonin cells and substance P (SP), vasoactive intestinal polypeptide (VIP) and total myenteric nerves were lower in the older IL-2+/- and IL-2-/- mice compared with the wild type. The other was disease-related. Polypeptide YY (PYY) cells and tissue levels of PYY, SP and VIP were significantly decreased in the IL-2-/- mice during the course of bowel inflammation compared with the healthy IL-2+/- and IL-2+/+ controls. These findings indicate that colonic neuroendocrine alterations did occur in the mice with a disrupted IL-2 gene and diminished local IL-2 level, suggesting a role of IL-2 in the regulation of the neuroendocrine system and a prevalent interaction between the immune and neuroendocrine systems in normal colon. On the other hand, there were some changes that seemed to correlate with the bowel inflammatory process. They might be associated with the impaired function in inflamed gut and contribute to the development and/or prolongation of disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colitis / physiopathology
  • Colon / pathology*
  • Enzyme-Linked Immunosorbent Assay
  • Humans
  • Interleukin-2 / genetics*
  • Interleukin-2 / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neurosecretory Systems / growth & development*
  • Radioimmunoassay

Substances

  • Interleukin-2