The melanocortins alpha- and gamma-melanocyte-stimulating hormones (alpha- and gamma-MSH) derive from the pro-opiomelanocortin (POMC) precursor. Melanocortins exert a wide range of biological activities in the brain through activation of at least three distinct melanocortin receptor (MC-R) subtypes. In order to determine whether POMC neurones can modulate their own activity, we looked for the possible expression of the MC3-R gene in POMC-positive cell bodies in the rat hypothalamus. In situ hybridization experiments revealed that the density of MC3-R mRNA is particularly high in the arcuate nucleus which contains the main population of POMC neurones in the brain. The occurrence of MC3-R mRNA in POMC-positive cell bodies was demonstrated using a double-labelling in situ hybridization technique. The proportion of POMC neurones expressing MC3-R mRNA was significantly higher in the most rostral (43.5%) than in the most posterior part of the arcuate nucleus (8.2%). These results indicate that melanocortins likely exert a direct regulatory feedback on POMC neurones through activation of MC3-R receptors. Our data also suggest that MC3-R may be involved in the neuroendocrine responses induced by centrally administered melanocortins.