Respiratory network function in the isolated brainstem-spinal cord of newborn rats

Prog Neurobiol. 1999 Dec;59(6):583-634. doi: 10.1016/s0301-0082(99)00009-x.


The in vitro brainstem-spinal cord preparation of newborn rats is an established model for the analysis of respiratory network functions. Respiratory activity is generated by interneurons, bilaterally distributed in the ventrolateral medulla. In particular non-NMDA type glutamate receptors constitute excitatory synaptic connectivity between respiratory neurons. Respiratory activity is modulated by a diversity of neuroactive substances such as serotonin, adenosine or norepinephrine. Cl(-)-mediated IPSPs provide a characteristic pattern of membrane potential fluctuations and elevation of the interstitial concentration of (endogenous) GABA or glycine leads to hyperpolarisation-related suppression of respiratory activity. Respiratory rhythm is not blocked upon inhibition of IPSPs with bicuculline, strychnine and saclofen. This indicates that GABA- and glycine-mediated mutual synaptic inhibition is not crucial for in vitro respiratory activity. The primary oscillatory activity is generated by neurons of a respiratory rhythm generator. In these cells, a set of intrinsic conductances such as P-type Ca2+ channels, persistent Na+ channels and G(i/o) protein-coupled K+ conductances mediates conditional bursting. The respiratory rhythm generator shapes the activity of an inspiratory pattern generator that provides the motor output recorded from cranial and spinal nerve rootlets in the preparation. Burst activity appears to be maintained by an excitatory drive due to tonic synaptic activity in concert with chemostimulation by H+. Evoked anoxia leads to a sustained decrease of respiratory frequency, related to K+ channel-mediated hyperpolarisation, whereas opiates or prostaglandins cause longlasting apnea due to a fall of cellular cAMP. The latter observations show that this in vitro model is also suited for analysis of clinically relevant disturbances of respiratory network function.

Publication types

  • Review

MeSH terms

  • Animals
  • Animals, Newborn
  • Brain Stem / physiology*
  • Humans
  • Nerve Net*
  • Neurons / physiology
  • Rats
  • Respiratory Center / physiology*
  • Respiratory Physiological Phenomena*
  • Spinal Cord / physiology*