Maximum likelihood analysis of quantitative trait loci under selective genotyping

Heredity (Edinb). 2000 May;84 ( Pt 5):525-37. doi: 10.1046/j.1365-2540.2000.00653.x.


Selective genotyping is a cost-saving strategy in mapping quantitative trait loci (QTLs). When the proportion of individuals selected for genotyping is low, the majority of the individuals are not genotyped, but their phenotypic values, if available, are still included in the data analysis to correct the bias in parameter estimation. These ungenotyped individuals do not contribute much information about linkage analysis and their inclusion can substantially increase the computational burden. For multiple trait analysis, ungenotyped individuals may not have a full array of phenotypic measurements. In this case, unbiased estimation of QTL effects using current methods seems to be impossible. In this study, we develop a maximum likelihood method of QTL mapping under selective genotyping using only the phenotypic values of genotyped individuals. Compared with the full data analysis (using all phenotypic values), the proposed method performs well. We derive an expectation-maximization (EM) algorithm that appears to be a simple modification of the existing EM algorithm for standard interval mapping. The new method can be readily incorporated into a standard QTL mapping software, e.g. MAPMAKER. A general recommendation is that whenever full data analysis is possible, the full maximum likelihood analysis should be performed. If it is impossible to analyse the full data, e.g. sample sizes are too large, phenotypic values of ungenotyped individuals are missing or composite interval mapping is to be performed, the proposed method can be applied.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Computational Biology
  • Genetic Linkage / genetics
  • Genetics, Population
  • Genotype*
  • Humans
  • Likelihood Functions*
  • Mathematics
  • Phenotype
  • Physical Chromosome Mapping
  • Quantitative Trait, Heritable*
  • Statistics as Topic