Organellar genes: why do they end up in the nucleus?
- PMID: 10858662
- DOI: 10.1016/s0168-9525(00)02053-9
Organellar genes: why do they end up in the nucleus?
Abstract
Many mitochondrial and plastid proteins are derived from their bacterial endosymbiotic ancestors, but their genes now reside on nuclear chromosomes instead of remaining within the organelle. To become an active nuclear gene and return to the organelle as a functional protein, an organellar gene must first be assimilated into the nuclear genome. The gene must then be transcribed and acquire a transit sequence for targeting the protein back to the organelle. On reaching the organelle, the protein must be properly folded and modified, and in many cases assembled in an orderly manner into a larger protein complex. Finally, the nuclear copy must be properly regulated to achieve a fitness level comparable with the organellar gene. Given the complexity in establishing a nuclear copy, why do organellar genes end up in the nucleus? Recent data suggest that these genes are worse off than their nuclear and free-living counterparts because of a reduction in the efficiency of natural selection, but do these population-genetic processes drive the movement of genes to the nucleus? We are now at a stage where we can begin to discriminate between competing hypotheses using a combination of experimental, natural population, bioinformatic and theoretical approaches.
Similar articles
-
The economics of organellar gene loss and endosymbiotic gene transfer.Genome Biol. 2021 Dec 20;22(1):345. doi: 10.1186/s13059-021-02567-w. Genome Biol. 2021. PMID: 34930424 Free PMC article.
-
Transcription of nuclear organellar DNA in a model plant system.Genome Biol Evol. 2014 May 27;6(6):1327-34. doi: 10.1093/gbe/evu111. Genome Biol Evol. 2014. PMID: 24868015 Free PMC article.
-
The discriminatory transfer routes of tRNA genes among organellar and nuclear genomes in flowering plants: a genome-wide investigation of indica rice.J Mol Evol. 2007 Mar;64(3):299-307. doi: 10.1007/s00239-005-0200-6. Epub 2007 Feb 1. J Mol Evol. 2007. PMID: 17273918
-
Phylogenetic analysis to uncover organellar origins of nuclear-encoded genes.Methods Mol Biol. 2007;390:467-88. doi: 10.1007/1-59745-466-4_30. Methods Mol Biol. 2007. PMID: 17951706
-
Coordination of gene expression between organellar and nuclear genomes.Nat Rev Genet. 2008 May;9(5):383-95. doi: 10.1038/nrg2348. Nat Rev Genet. 2008. PMID: 18368053 Free PMC article. Review.
Cited by 45 articles
-
The chromatin organization of a chlorarachniophyte nucleomorph genome.Genome Biol. 2022 Mar 1;23(1):65. doi: 10.1186/s13059-022-02639-5. Genome Biol. 2022. PMID: 35232465 Free PMC article.
-
Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity.Life (Basel). 2020 Aug 31;10(9):173. doi: 10.3390/life10090173. Life (Basel). 2020. PMID: 32878185 Free PMC article. Review.
-
Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in African and Asian rice.Plant J. 2020 Nov;104(3):596-612. doi: 10.1111/tpj.14946. Epub 2020 Aug 27. Plant J. 2020. PMID: 32748498 Free PMC article.
-
Temperature-dependent mitochondrial-nuclear epistasis.MicroPubl Biol. 2019 Sep 9;2019:10.17912/micropub.biology.000147. doi: 10.17912/micropub.biology.000147. MicroPubl Biol. 2019. PMID: 32550454 Free PMC article. No abstract available.
-
Evolving mtDNA populations within cells.Biochem Soc Trans. 2019 Oct 31;47(5):1367-1382. doi: 10.1042/BST20190238. Biochem Soc Trans. 2019. PMID: 31484687 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
