Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells

Leukemia. 2000 Jun;14(6):1060-79. doi: 10.1038/sj.leu.2401792.


The Raf oncoprotein plays critical roles in the transmission of mitogenic signals from cytokine receptors to the nucleus. There are three Raf family members: A-Raf, B-Raf and Raf-1. Conditionally active forms of the Raf proteins were created by ligating N-terminal truncated activated forms to the estrogen-receptor (ER) hormone-binding domain resulting in beta-estradiol-inducible constructs. We introduced these chimeric deltaRaf:ER oncoproteins into the murine FDC-P1 hematopoietic cell line. Two different types of cells were recovered after drug selection in medium containing either cytokine or beta-estradiol: (1) cytokine-dependent cells that expressed the deltaRaf:ER oncoproteins; and (2) Raf-responsive cells that grew in response to the deltaRaf:ER oncoprotein. Depending upon the particular deltaRaf:ER oncoprotein, cytokine-dependent cells were recovered 10(3) to 10(5) times more frequently than Raf-responsive cells. To determine whether BCL2 could synergize with the deltaRaf:ER oncoproteins and increase the frequency of cytokine-independent cells, cytokine-dependent deltaRaf:ER-expressing cells were infected with either a BCL2 containing retrovirus or an empty retroviral vector. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cell line. However, BCL2 overexpression increased the frequency of Raf-responsive cells approximately five- to 100-fold. Cytokine-dependent deltaRaf:ER-infected cells entered the G1 phase of the cell cycle after cytokine withdrawal and entered S phase only after cytokine addition. Raf-responsive deltaRaf:ER cells entered the G1 phase of the cell cycle after estrogen deprivation and re-entered the cell cycle after addition of either IL-3 or the estrogen receptor antagonist tamoxifen which activates the deltaRaf:ER constructs. Expression of the BCL2 oncoprotein often delayed the exit from the S and G2/M phases demonstrating the protective effects BCL2 provided to these Raf and BCL2 infected cells. The deltaRaf:ER cells expressed the deltaRaf:ER proteins and downstream MEK and ERK activities after beta-estradiol treatment. Raf-responsive cells that were also infected with BCL2 expressed higher levels of BCL2 than the cells that were not infected with BCL2. Thus BCL2 can synergize with the activated Raf in the abrogation of cytokine dependency of certain hematopoietic cells. These cells will be useful in furthering our understanding of the roles of the Raf and BCL2 oncoproteins in hematopoietic cell growth, cell cycle progression and prevention of apoptosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / physiology
  • Base Sequence
  • Bone Marrow Cells / metabolism*
  • Cytokines / metabolism*
  • DNA Primers
  • Estradiol / pharmacology
  • Humans
  • Interleukin-3 / pharmacology
  • Oncogene Proteins v-raf
  • Protein Binding
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*
  • Retroviridae Proteins, Oncogenic / metabolism*
  • Retroviridae Proteins, Oncogenic / physiology
  • Thymidine / metabolism


  • Cytokines
  • DNA Primers
  • Interleukin-3
  • Proto-Oncogene Proteins c-bcl-2
  • Retroviridae Proteins, Oncogenic
  • Estradiol
  • Oncogene Proteins v-raf
  • Thymidine