Breast cancer risk and measured mammographic density

Eur J Cancer Prev. 1998 Feb:7 Suppl 1:S47-55. doi: 10.1097/00008469-199802001-00010.

Abstract

It has been well established that there is a positive correlation between the dense appearance of breast stroma and parenchyma on a mammogram and the risk of breast cancer. Subjective assessment by radiologists indicated relative risks on the order of 4 to 6 for the group of women whose mammograms showed a density of over 75% or more of the projected area compared to those with an absence of density. In order to obtain a more quantitative, continuous and reproducible means of estimating breast density, which is sensitive to small changes, we have developed quantitative methods for the analysis of mammographic density, which can be applied to digitized mammograms. These techniques have been validated in a nested case-control study on 708 women aged 40-59 years (on entry) who participated in a national mammographic screening study. An interactive image segmentation method and two completely automated techniques based on image texture and grey scale histogram measures have been developed and evaluated. While our methods all show statistically significant risk factors for dense breasts, the interactive method currently provides the highest risk values (relative risk 4.0, 95% confidence interval (CI) = 2.12-7.56) compared to a measure based on the shape of the image histogram (relative risk 3.35, 95% CI = 1.57-7.12) or the fractal dimension of the mammogram (relative risk 2.54, 95% CI = 1.14-5.68). All methods were highly consistent between images of the left and right breast and between the two standard views (cranio-caudal and medio-lateral oblique) of each breast, so that studies can be done by sampling only one of the four views per examination. There is a large number of factors in addition to breast density which affect the appearance of the mammogram. In particular, the assessment of density is made difficult where the breast is not uniformly compressed, e.g. at the periphery. We have designed and are currently evaluating an image processing algorithm that effectively corrects for this problem and have considered methods for controlling some of the variables of image acquisition in prospective studies. Measurements of breast density may be helpful in assigning risk groups to women. Such measurements might guide the frequency of mammographic screening, aid the study of breast cancer aetiology, and be useful in monitoring possible risk-modifying interventions. Using our techniques, we have been able to show that reduction of the proportion of fat in the diet can result in reductions of breast density, although the direct connection to risk has not yet been made. The relationship between breast density and hormone-related and genetic factors is also of great interest. It is often not possible or ethical to obtain mammograms on some groups of women for whom information on density would be very useful. This includes younger women as well as groups in which it would be desirable to obtain such information at frequent intervals. For this reason, we are exploring the use of imaging approaches such as ultrasound and magnetic resonance imaging, which do not require ionizing radiation, to make measurements analogous to those now being performed by using X-ray mammograms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Breast Neoplasms / diagnostic imaging*
  • Breast Neoplasms / epidemiology*
  • Female
  • Humans
  • Mammography / methods*
  • Mathematics
  • Middle Aged
  • Risk Assessment