Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 44 Suppl B, 3-9

Epidemiology and Pathogenesis of Influenza


Epidemiology and Pathogenesis of Influenza

M C Zambon. J Antimicrob Chemother.


Influenza A, B and C all have a segmented genome, although only certain influenza A subtypes and influenza B cause severe disease in humans. The two major proteins of influenza are the surface glycoproteins-haemagglutinin (HA) and neuraminidase (NA). HA is the major antigen for neutralizing antibodies and is involved in the binding of virus particles to receptors on host cells. Pandemics are a result of novel virus subtypes of influenza A, created by reassortment of the segmented genome (antigenic shift), whereas annual epidemics are a result of evolution of the surface antigens of influenza A and B virus (antigenic drift). The rapid evolution of influenza viruses highlights the importance of surveillance in identifying novel circulating strains. Infectivity of influenza depends on the cleavage of HA by specific host proteases, whereas NA is involved in the release of progeny virions from the cell surface and prevents clumping of newly formed virus. In birds, the natural hosts of influenza, the virus causes gastrointestinal infection and is transmitted via the faeco-oral route. Virulent avian influenza strains, which cause systemic disease, have an HA that is cleaved by proteases present in all cells of the body, rather than by proteases restricted to the intestinal tract. In mammals, replication of influenza subtypes appears restricted to respiratory epithelial cells. Most symptoms and complications, therefore, involve the respiratory tract. However, systemic complications are sometimes observed and other viral genes besides the HA, including the NA, may be involved in determination of virulence of influenza strains in mammals.

Similar articles

See all similar articles

Cited by 44 PubMed Central articles

See all "Cited by" articles

Publication types

LinkOut - more resources