Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach

Dev Biol. 2000 Jun 1;222(1):124-34. doi: 10.1006/dbio.2000.9720.

Abstract

Xenopus embryos develop dorsal/ventral and anterior/posterior axes as a result of the activity of a maternal Xwnt pathway, in which beta-catenin is an essential component, acting as a transactivator of transcription of zygotic genes. However, the questions of where and when beta-catenin is required in early embryogenesis have not been addressed directly, because no loss-of-function method has been available. Here we report the use of a novel antisense approach that allows us to target depletion of protein to individual blastomeres. When a "morpholino" oligo complementary to beta-catenin mRNA is injected into early embryos, it depletes beta-catenin protein effectively through the neurula stage. By targeting the oligo to different cleavage blastomeres, we block beta-catenin activity in different areas and at different times. Dorsal vegetal injection at the 2- and 4-cell stages blocks dorsal axis formation and at the 8-cell stage blocks head formation, while A-tier injection at the 32-cell stage causes abnormal cement gland formation. This approach shows the complex involvement of Xwnt pathways in embryonic patterning and offers a rapid method for the functional analysis of both maternal and early zygotic gene products in Xenopus.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Cytoskeletal Proteins / genetics
  • Cytoskeletal Proteins / metabolism*
  • DNA Primers
  • Embryo, Nonmammalian / metabolism
  • Oligonucleotides, Antisense / genetics*
  • Signal Transduction*
  • Trans-Activators*
  • Xenopus / embryology
  • Xenopus Proteins
  • beta Catenin

Substances

  • CTNNB1 protein, Xenopus
  • Cytoskeletal Proteins
  • DNA Primers
  • Oligonucleotides, Antisense
  • Trans-Activators
  • Xenopus Proteins
  • beta Catenin