Differential role of beta(1C) and beta(1A) integrin cytoplasmic variants in modulating focal adhesion kinase, protein kinase B/AKT, and Ras/Mitogen-activated protein kinase pathways

Mol Biol Cell. 2000 Jul;11(7):2235-49. doi: 10.1091/mbc.11.7.2235.

Abstract

The integrin cytoplasmic domain modulates cell proliferation, adhesion, migration, and intracellular signaling. The beta(1) integrin subunits, beta(1C) and beta(1A), that contain variant cytoplasmic domains differentially affect cell proliferation; beta(1C) inhibits proliferation, whereas beta(1A) promotes it. We investigated the ability of beta(1C) and beta(1A) to modulate integrin-mediated signaling events that affect cell proliferation and survival in Chinese hamster ovary stable cell lines expressing either human beta(1C) or human beta(1A). The different cytodomains of either beta(1C) or beta(1A) did not affect either association with the endogenous alpha(2), alpha(V), and alpha(5) subunits or cell adhesion to fibronectin or TS2/16, a mAb to human beta(1). Upon engagement of endogenous and exogenous integrins by fibronectin, cells expressing beta(1C) showed significantly inhibited extracellular signal-regulated kinase (ERK) 2 activation compared with beta(1A) stable cell lines. In contrast, focal adhesion kinase phosphorylation and Protein Kinase B/AKT activity were not affected. Selective engagement of the exogenously expressed beta(1C) by TS2/16 led to stimulation of Protein Kinase B/AKT phosphorylation but not of ERK2 activation; in contrast, beta(1A) engagement induced activation of both proteins. We show that Ras activation was strongly reduced in beta(1C) stable cell lines in response to fibronectin adhesion and that expression of constitutively active Ras, Ras 61 (L), rescued beta(1C)-mediated down-regulation of ERK2 activation. Inhibition of cell proliferation in beta(1C) stable cell lines was attributable to an inhibitory effect of beta(1C) on the Ras/MAP kinase pathway because expression of activated MAPK kinase rescued beta(1C) antiproliferative effect. These findings show that the beta(1C) variant, by means of a unique signaling mechanism, selectively inhibits the MAP kinase pathway by preventing Ras activation without affecting either survival signals stimulated by integrins or cellular interactions with the extracellular matrix. These findings highlight a role for beta(1)-specific cytodomain sequences in maintaining an intracellular balance of proliferation and survival signals.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • CHO Cells
  • Cell Adhesion
  • Cricetinae
  • Cytoplasm / metabolism
  • Enzyme Activation
  • Fibronectins / metabolism
  • Focal Adhesion Kinase 1
  • Focal Adhesion Protein-Tyrosine Kinases
  • Gene Expression
  • Humans
  • Integrin beta1 / genetics
  • Integrin beta1 / metabolism
  • Integrin beta1 / physiology*
  • Integrins / genetics
  • Integrins / metabolism
  • Integrins / physiology*
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Phosphorylation
  • Protein Serine-Threonine Kinases*
  • Protein-Tyrosine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-akt
  • Rabbits
  • Signal Transduction*
  • ras Proteins / metabolism*

Substances

  • Fibronectins
  • Integrin beta1
  • Integrins
  • Proto-Oncogene Proteins
  • integrin beta1C
  • Protein-Tyrosine Kinases
  • Focal Adhesion Kinase 1
  • Focal Adhesion Protein-Tyrosine Kinases
  • PTK2 protein, human
  • AKT1 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 1
  • ras Proteins