Special problems in aerosol delivery: neonatal and pediatric considerations

Respir Care. 2000 Jun;45(6):646-51.


Identification of the determinants of efficient aerosol delivery and the specific challenges of aerosol delivery to infants and children can facilitate a systematic approach to optimize aerosol delivery to this population. There are inherent anatomical, physiologic, pathophysiologic, and technical limitations of aerosol efficiency in infants and young children. Nevertheless, one can enhance aerosol efficiency through application of sound principles of aerosol delivery and by exerting control over factors that are amenable to intervention. Improvements in aerosol formulations and delivery systems are being made that will enhance efficiency, decrease risk, and reduce waste and cost. Attention to aerosol particle size (1-3 microm mass median aerodynamic diameter and geometric standard deviation < 2 microm), and the concentration of this respirable particle fraction produced by an aerosol system may enhance delivery through endotracheal tubes and to the lower respiratory tract in infants and children with low V(T) and low inspiratory rates. Attention to the choice of delivery system and to details of proper MDI technique (shaking, priming, immediate actuation, and avoiding multiple actuations prior to inhalation), choice of the aerosol spacer and patient interface (type of face mask, endotracheal tube, mouthpiece), spacer cleaning, and consideration of the medicine to be aerosolized (solution or suspension, viscosity) permit adjustment of the aerosol regimen to optimize delivery. All the patient-related, system-related, and operator-dependent considerations combined can greatly impact aerosol delivery efficacy and improve therapeutic response. Therefore, education and motivation of medical personnel, parents and caregivers, and patients regarding factors that influence aerosol efficiency and teaching of proper technique must be prioritized in order to improve aerosol delivery. Aerosol therapy to all patients, especially infants and young children, would be well served if we had a clear understanding of the efficiency and functional differences among the various drugs and devices. These are substantive issues with daily therapeutic impact that have received increasingly outspoken concern over the past decade by aerosol scientists and clinicians. These issues must be given due attention by drug and device manufacturers as well as by regulatory agencies. The medication, the device, and the conditions under which they are tested must be considered together and studied as thoroughly as the medications themselves with respect to total output and particle size distribution. As noted by Bisgaard, medication dose recommendations are useless unless the device and technique used are specified. Medication dose recommendation could be facilitated by setting equivalent standards for generic and brand-name medications and devices. In addition, standardization of in vitro models with better replicas of infants' and children's anatomy (oropharynx, upper airways), and better in vitro lung models, plus utilization of realistic breathing patterns of infants and children will improve in vitro prediction of the in vivo dose delivered to lower airways. This would greatly facilitate selection of delivery systems under specific circumstances for infants and children of various ages). Safety profile, therapeutic efficacy, and efficiency of aerosolized medications delivered to infants and children need to be rigorously studied. This is particularly true for medications with potentially great benefit but possible adverse effects, such as inhaled glucocorticoid therapy in extremely premature infants. Common sense, ethics, and due respect for the same high standard of approval requirements of adults and older children should motivate further research in understanding and improving aerosol delivery in infants and young children.

MeSH terms

  • Aerosols*
  • Age Factors
  • Child
  • Equipment Design
  • Humans
  • Infant, Newborn
  • Nebulizers and Vaporizers*
  • Particle Size
  • Respiration Disorders / drug therapy
  • Respiratory Mechanics


  • Aerosols