The clinical results of [(131)I]meta-iodobenzylguanidine (MIBG)-targeted radiotherapy in neuroblastoma patients is highly variable. To assess the therapeutic potential of [(131)I]MIBG, we used the SK-N-SH human neuroblastoma, xenografted in nude mice. The model was first characterized for basic parameters of MIBG handling in the host species. This demonstrated the presence of both strain- and nu/nu mutation-related differences in [(131)I]MIBG biodistribution. Fecal and urinary clearance rates of [(131)I]MIBG in mice roughly resemble those in humans, but mice metabolize MIBG more extensively. In both species, enzymatic deiodination in vivo was not an important metabolic route. Therapy with increasing [(131)I]MIBG doses (25-92 MBq) given as single i.v. injections resulted in proportionally increasing specific growth delay values (tumor regrowth delay/doubling time) of 1 to 5. Using gamma-camera scintigraphy for non-invasive dosimetry, the corresponding calculated absorbed tumor radiation doses ranged from 2 to 11 Gy. We also compared the therapeutic effects of a single [(131)I]MIBG administration with those resulting from a more protracted exposure by fractionating the dose in 2 to 6 injections or with high dose rate external-beam irradiation. No therapeutic advantage of a fractionated schedule was observed, and 5.5 Gy delivered by low dose-rate [(131)I]MIBG endo-irradiation was equi-effective with 5.0 Gy X-rays. The SK-N-SH neuroblastoma xenograft model thus appears suitable to evaluate possible treatment improvements to reach full potential of MIBG radiotherapy.
Copyright 2000 Wiley-Liss, Inc.