Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells

J Histochem Cytochem. 2000 Aug;48(8):1079-96. doi: 10.1177/002215540004800805.


Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation
  • Cell Division
  • Cells, Cultured
  • Connective Tissue Cells / metabolism
  • Fibroblast Growth Factor 6
  • Fibroblast Growth Factors / genetics
  • Fibroblast Growth Factors / metabolism*
  • Fibroblast Growth Factors / pharmacology
  • Fluorescent Antibody Technique
  • Gene Expression*
  • Hepatocyte Growth Factor / pharmacology
  • Male
  • Muscle Fibers, Skeletal / metabolism
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / metabolism*
  • Proto-Oncogene Proteins*
  • Rats
  • Rats, Sprague-Dawley
  • Receptor Protein-Tyrosine Kinases / genetics
  • Receptor Protein-Tyrosine Kinases / metabolism*
  • Receptors, Fibroblast Growth Factor / genetics
  • Receptors, Fibroblast Growth Factor / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction


  • Fgf6 protein, rat
  • Fibroblast Growth Factor 6
  • Proto-Oncogene Proteins
  • Receptors, Fibroblast Growth Factor
  • Fibroblast Growth Factors
  • Hepatocyte Growth Factor
  • Receptor Protein-Tyrosine Kinases